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the diamond difference scheme [1], can yield large and
negative discrete solutions in optically thick cells and areVarious types of linear-discontinuous spatial differencing

schemes have been developed for the Sn (discrete-ordinates) equa- thus unacceptable for radiative transfer calculations. There
tions approximating the linear Boltzmann transport equation. It has are other simple schemes, such as the step or upwind
been shown through an asymptotic analysis that the 1D slab-geome- scheme [1], which are strictly positive. However, the steptry lumped linear-discontinuous scheme not only goes over to a

scheme can give very poor results in diffusive regions whenconvergent and robust differencing of the diffusion equation in the
the cells are optically thick. Counter to intuition, this can bemonoenergetic thick diffusion limit, but it also yields the correct

interior solution, even when boundary layers are left unresolved the case even when the analytic solution varies arbitrarily
by the spatial mesh. In the present work we generalize this scheme slowly over a cell. The theoretical justification for this be-
to obtain a 1D slab-geometry lumped linear-discontinuous scheme

havior arises from the fact that truncation error analysisfor the nonlinear radiative transfer equation and the associated
indicates that consistent spatial discretization schemes formaterial temperature equation. We present a full nonlinear energy-

dependent asymptotic analysis of the behavior of this scheme in the Sn equations necessarily converge only in the limit as
the thick equilibrium-diffusion limit. We find that this scheme goes the cell width becomes small relative to a mean-free-path.
over to a convergent and robust differencing of the equilibrium- A form of analysis known as a thick diffusion-limit analysis
diffusion equation on the interior of the mesh, but it does not yield

has been developed by Larsen et. al. [2] to provide informa-the exact interior solution when boundary layers are left unresolved
tion on the behavior of Sn spatial discretization schemesby the spatial mesh. Nevertheless, the interior solution obtained

with spatially unresolved boundary layers is always well behaved when the analytic solution is diffusive and the spatial cells
and fairly accurate. Computational results are presented which test are optically thick. The idea of this analysis is fairly straight-
the predictions of our asymptotic analysis and demonstrate the forward and can be described as follows. The diffusion
efficiency of our solution technique. Q 1996 Academic Press, Inc.

equation can be obtained from the transport equation by
means of an asymptotic expansion. The question naturally
arises as to what happens when this expansion is applied to1. INTRODUCTION
a consistent spatially discretized form of the Sn equations. If
one obtains a consistent discretization for the diffusionRadiative transfer problems in the stellar regime are
equation, the spatial discretization scheme is said to haveextremely challenging from a numerical point of view. Dif-
the diffusion limit. In practical terms, a scheme which hasficulties arise because the transport medium often appears
the diffusion limit will yield accurate results with opticallyoptically thin to high-frequency photons, but highly opti-
thick spatial cells as long as the variation of the analyticcally thick to low-frequency photons. Opacities can vary
solution is well resolved by the mesh. However, if a schemeover the relevant frequency range by six orders of magni-
does not have the diffusion limit, optically thin cells aretude or more. Thus it is essentially impossible to spatially

resolve the intensity solution for all photon frequencies on required to obtain accurate results regardless of how slowly
the solution varies within each cell. These concepts area submean-free-path basis. In a sourceless nondiffusive

region, the analytic solution is highly attenuated in opti- explained in a review article by Larsen on the use of asymp-
totic expansions for analyzing computational transportcally thick cells. This means that spatial discretization

schemes for the Sn equations must be able to produce schemes [3]. Computational results presented in Ref. [2]
demonstrate how startlingly inaccurate Sn schemes that dohighly attenuated solutions in such cells. Strict positivity is

desirable, but not absolutely necessary. If the solution is not possess the diffusion limit can be in diffusive problems
with optically thick cells, even when the analytic solutionhighly attenuated and negative, it can be reset at the end

of a time step to some small and positive value without hardly varies across each spatial cell. As previouly noted,
it is prohibitively expensive in radiative transfer calcula-significantly affecting the total radiation energy in the

problem. Many simple Sn discretization schemes, such as tions to have cell widths that are optically thin for all
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photon frequencies. Thus it is essential to use Sn spatial tion. However, our scheme does not necessarily yield the
correct interior solution when boundary layers are leftdiscretization schemes that have the diffusion limit. The

step or upwind scheme is strictly positive, but it does not unresolved by the spatial mesh. This is somewhat disap-
pointing in view of the performance of the linear-discontin-have the thick diffusion limit and thus is generally not

acceptable for radiative transfer calculations [2]. Even a uous scheme for the linear Boltzmann equation, but at
least the solution is always well-behaved if not correct.scheme that has the diffusion limit can give inaccurate

solutions within diffusive regions when boundary layers Thus overall robustness is obtained.
The remainder of this paper is organized as follows. Firstbetween transport and diffusive regions are left spatially

unresolved. Although the discrete transport solution we describe the radiative transfer and material tempera-
ture equations. Next we perform an asymptotic analysiswithin a diffusive region satisfies a consistent discretization

of the diffusion equation, failure to resolve boundary layers of these equations to obtain the equilibrium-diffusion
equation. Our discretized Sn and temperature equationson the periphery of that region effectively leads to incorrect

diffusion boundary conditions [2]. Although it is not impos- are then derived, followed by a discrete asymptotic analysis
to determine their behavior in the equilibrium-diffusionsible to resolve boundary layers in radiative transfer calcu-

lations, it is nonetheless quite difficult, and in general re- limit. Next we describe the technique used to solve our
discrete equations. Computational results which confirmquires an adaptive meshing scheme. Thus it is highly

desirable for Sn spatial discretization schemes used in radia- the predictions of our analysis are given next. Finally we
give conclusions and recommendations for future work.tive transfer calculations to give accurate solutions on the

interior of diffusive regions with unresolved boundary lay-
ers. On the whole, the requirements for Sn spatial discreti- 2. THE EQUATIONS OF RADIATIVE TRANSFER
zation schemes used in radiative transfer calculations are
truly severe. The 1D slab-geometry radiative transfer equation is

Several linear-discontinuous finite-element spatial dif- given by
ferencing schemes have been developed for the standard
linear form of the Sn equations [4]–[6]. These schemes
have proven to be robust and accurate for a wide variety

1
c

­c

­t
1 e

­c

­z
1 stc 5

1
4f

ssf 1 saB(T), (1)
of neutral and charged-particle transport applications [7,
8]. Larsen and Morel have analyzed the asymptotic

where c denotes the speed of light, t is the time variable,behavior of the 1D slab-geometry lumped linear-discon-
z is the spatial variable, e is the directional variable,tinuous difference scheme in the monoenergetic thick
c(t, z, e, n) is the angular intensity (energy/area—time—diffusion limit [9]. It was shown that this scheme not
frequency—steradian), st(z, n) is the extinction coefficientonly goes over to a convergent and robust differencing
(absorption plus scattering) (length21), ss(z, n) is theof the diffusion equation in this limit, but it also yields
scattering coefficient (length21), sa(z, n) is the absorptionthe correct interior solution, even when boundary layers
coefficient (length21), T is the material temperature,are left unresolved by the spatial mesh. This is a rather
B(T, n) is the Planck function (energy/area—time—remarkable result which suggests that linear-discontinu-
frequency—steradian), and f(z, n) is the direction-inte-ous Sn spatial differencing schemes might be particularly
grated intensity:useful for radiative transfer problems since such problems

often include both transport-dominated regions and
highly diffusive regions.

f 5 2f E11

21
c(e) de. (2)The purpose of this paper is to describe a nonlinear

variant of the linear 1D slab-geometry linear-discontinuous
Sn differencing scheme which we have developed for the The Planck function is given by
radiative transfer equation and the associated material
temperature equation. We also present an asymptotic anal-
ysis which predicts the behavior of this scheme in the thick B(T, n) 5

2hn 3

c2 [exp(hn/kT) 2 1]21, (3)
equilibrium-diffusion limit. The original analysis devel-
oped by Larsen et. al. [2] is related to a monoenergetic
linear diffusion limit. The nonlinear equilibrium diffusion where h is the Planck constant and k is the Boltzman

constant. Boundary conditions for Eq. (1) can take variouslimit which we consider in our analysis represents a physical
limit actually encountered in radiative transfer calculations forms. In general, the incoming angular intensity is defined

at both the left and right boundary faces. For instance,[10]. Our analysis indicates that on the interior of the mesh
our linear-discontinuous scheme goes over to a convergent assuming the spatial domain to be the closed interval,

[zL, zR], we define the boundary conditions asand robust differencing of the equilibrium-diffusion equa-
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c(zL, e, n) 5 f L(e, n), e . 0, n [ (0, y), (4) and (6), we obtain the following scaled transport and tem-
perature equations:

c(zR , e, n) 5 f B(e, n), e , 0, n [ (0, y), (5)

«2 1
c

­c

­t
1 «e

­c

­z
1 stc 5

1
4f

«ssf 1 (st 2 «ss)B(T), (12)where f L and f R are either explicitly or implicitly speci-
fied. For instance, explicitly setting f L 5 0 results in a
vacuum boundary condition, whereas setting f L(e, n) 5 «2Cv

­T
­t

5 Ey

0
(st 2 «ss)(f 2 4fB) dn 1 «2Q.

c(zL, 2e, n) results in a reflective condition. The material
(13)temperature equation is

Next we assume that the intensity and temperature solu-
Cv

­T
­t

5 Ey

0
sa(f 2 4fB(T)) dn 1 Q, (6) tions can be expanded in a power series in «:

c 5 Oy
n50

c (n)«n, (14)where Cv is the heat capacity (energy/volume—
temperature), and Q is the material energy source (energy/
volume—time). Equations (1) and (6) are valid under the

T 5 Oy
n50

T (n)«n. (15)assumption that the material is in local thermodynamic
equilibrium.

(16)

3. THE EQULIBRIUM-DIFFUSION LIMIT
Since the Planck function is an explicit function of tempera-
ture, it follows thatIn this section we use an asymptotic method to derive

the equilibrium-diffusion equation. This derivation is
B 5 B(0) 1 B(1)« 1 B(2)«2 1 ? ? ? , (17)similar to that given by Larsen, et. al. [10]. We begin

by scaling certain physical constants in Eqs. (1) and (6)
with a small-parameter, «. In particular, the following where
replacements are made:

B(0) 5 Bu«50 ,

5 BuT5T (0) . (18)c R
c
«

, (7)

B(1) 5
­B
­«
U

«50
,

st R
st

«
, (8)

5
­B
­T

­T
­«
U

«50
,sa R

st

«
2 ss , (9)

Cv R Cv«, (10)
5

­B
­TUT5T(0)

T (1), etc. (19)
Q R Q«. (11)

Since the heat capacity and the absorption and scattering
These scalings can be physically interpreted as follows in coefficients also depend explicitly upon temperature,
the limit as « R 0: The scaling defined by Eq. (7) makes expansions analogous to Eq. (17) are assumed for these
the particle speed approach infinity. The scaling defined quantities:
by Eq. (8) makes the total mean-free path approach zero.
The scaling defined by Eq. (9) makes the absorption mean-

Cv 5 C(0)
v 1 C(1)

v « 1 C(2)
v «2 1 ? ? ? , (20)free-path approach zero while leaving the scattering mean-

free-path unscaled. The scaling defined by Eq. (10) makes ss 5 s (0)
s 1 s (1)

s « 1 s (2)
s «2 1 ? ? ? , (21)

the heat capacity approach zero. The scaling defined by
sa 5 s (0)

a 1 s (1)
a « 1 s (2)

a «2 1 ? ? ? . (22)Eq. (11) makes the source approach zero, but this is only
necessary to achieve a leading-order solution which is inde-
pendent of «. All of the other scalings are required to Substituting from Eqs. (14) through (22) into Eqs. (12)

and (13), we obtain an infinite heirarchical set of equationsachieve a diffusive solution.
Substituting from Eqs. (7) through (11) into Eqs. (1) by recognizing that each equation must independently hold
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for the coefficients of like powers of «. In particular, the and
equations for «0 are

Ey

0
s (0)

t (f(1) 2 4fB(1)) dn 5 0. (31)
s (0)

t c (0) 5 s (0)
t B(0) (23)

Solving Eq. (30) for c (1), we obtain
and

c (1) 5 2
e

s (0)
t b

­B(0)

­z
1 B(1). (32)Ey

0
s (0)

t (f(0) 2 4fB(0)) dn 5 0. (24)

Substituting from Eq. (19) into Eq. (32) and reexpressingSolving Eq. (23) for c (0), we obtain
the spatial derivative term in Eq. (32), we find that

c (0) 5 B(0). (25)
c (1) 5 2

e
s (0)

t

­B(T (0))
­T

­T (0)

­z
1

­B(T (0))
­T

T (0). (33)

Thus we find from Eq. (25) that the zeroth order angular
intensity solution is isotropic in direction and Planckian in

It can be seen from Eq. (33) that the first-order angularspectral shape. Note that, since B(0) 5 B(T (0)), this intensity
intensity solution has a linearly anisotropic directionalsolution is completely defined by the zeroth order tempera-
shape and a Rosseland (­B/­T) spectral shape.ture solution. Integrating Eq. (25) over all directions,

The equations for «2 arewe get

1
c

­c (0)

­t
1 e

­c (1)

­z
1 s (0)

t c (2) 1 s (1)
t c (1) 1 s (2)

t c (0)f(0) 5 4fB(0), (26)

which is consistent with Eq. (25). Integrating Eq. (26) over 5
1

4f
s (0)

s f(1) 1 s (1)
s f(0) 1 s (0)

t B(2) 1 s (1)
t B(1) (34)

all frequencies, we get
1 s (2)

t B(0) 2 s (0)
s B(1) 2 s (1)

s B(0)

4f Ey

0
f(0) dn 5 acT (0)4

, (27)
and

where a is the Planck radiation constant (energy/
C (0)

v
­T (0)

­t
5 Ey

0
[s (0)

t (f(2) 2 4fB(2)) 1 s (1)
t (f(1) 2 4fB(1))—volume—temperature4).

The equations for «1 are
1 s (2)

t (f(0) 2 4fB(0)) 2 s (0)
s (f(1) 2 4fB(1)) (35)

2 s (1)
s (f(0) 2 4fB(0))] dn 1 Q.e

­c (0)

­z
1 s (0)

t c (1) 1 s (1)
t c (0) 5

1
4f

s (0)
s f(0) 1 s (0)

t B(1)

(28)
Using Eqs. (25) and (26) to simplify Eqs. (34) and (35),1 s (1)

t B(0) 2 s (0)
s B(0)

respectively, we obtain

and
1
c

­c (0)

­t
1 e

­c (1)

­z
1 s (0)

t c(2) 1 s (1)
t c(1)

(36)Ey

0
[s (0)

t (f(1) 2 4fB(1)) 1 s (1)
t (f(0) 2 4fB(0))

(29) 5
1

4f
s (0)

s f(1) 1 s (0)
t B(2) 1 s (1)

t B(1) 2 s (0)
s B(1)

2 s (0)
s (f(0) 2 4fB(0))] dn 5 0.

andUsing Eqs. (25) and (26), we simplify Eqs. (28) and (29),
respectively, as

C (0)
v

­T (0)

­t
5 Ey

0
[s (0)

t (f(2) 2 4fB(2))

(37)e
­B(0)

­z
1 s (0)

t c (1) 5 s (0)
t B(1) (30)

1 (s (1)
t 2 s (0)

s )(f(1) 2 4fB(1))] dn 1 Q.
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Integrating Eq. (36) over all directions and frequencies where
while taking Eq. (27) into account, we obtain

D(0) 5
4acT (0)3

3ks (0)
t l

(45)

a
­T (0)4

­t
1 Ey

0
2f E11

21
e

­c (1)

­z
de dn

and
1 Ey

0
[s (0)

t (f(2) 2 4fB(2)) (38)

2 (s (1)
t 2 s (0)

s )(f(1) 2 4fB(1))] dn 5 0.
1

ks (0)
t l

5
1

4acT (0)3 Ey

0

4f
s (0)

t

­B(0)

­T
dn. (46)

Substituting from Eq. (37) into Eq. (38), we find that Note from Eq. (46) that ks (0)
t l is the standard Rosseland-

mean extinction coefficient.
Thus we see from Eqs. (25) and (44) that, to zeroth

order in the asymptotic limit, the solution to the radiationC (0)
v

­T (0)

­t
1 a

­T (0)4

­t
1 Ey

0
2f E11

21
e

­c (1)

­z
de dn 5 Q. (39)

transport equation goes to an isotropic and locally Planck-
ian function of the material temperature and the material
temperature satisfies a nonlinear diffusion equation.Reexpressing the time-derivative of T (0)4

in Eq. (39), we get
The analysis that we have presented does not address the

question of boundary conditions for Eq. (44). A boundary-
layer analysis is required to address this question. How-

(C (0)
v 1 4aT (0)3

)
­T (0)

­t
1 Ey

0
2f E11

21
e

­c (1)

­z
de dn 5 Q. (40) ever, such an analysis would be quite difficult since it essen-

tially requires an exact solution of the transport and mate-
rial temperature equations for the problem of interest,

Substituting from Eq. (33) into Eq. (40) and evaluating i.e., the problem for which diffusion boundary conditions
the integral over the angle, we obtain are desired.

We are interested in a steady-state problem consisting
of a homogeneous half-space with reflective boundary con-
ditions at infinity,(C (0)

v 1 4aT (0)3
)

­T (0)

­t
2 Ey

0

­

­z
4f

3s (0)
t

­B
­T

­T (0)

­z
dn 5 Q. (41)

c(y, e, n) 5 c(y, 2e, n), (47)
Moving the frequency integral through the first spatial
derivative in Eq. (41), we get and an arbitrary angular intensity incident at z 5 0,

c(0, e, n) 5 f(e, n) for e . 0, (48)
(C (0)

v 1 4aT (0)3
)

­T (0)

­t
2

­

­z
1
3 FEy

0

4f
s (0)

t

­B(0)

­T
dnG ­T (0)

­z
5 Q.

It can be shown that, at all points sufficiently deep in(42)
the interior, the temperature solution is constant, and the
transport solution is constant, isotropic in angle, and
Planckian in spectral shape. The equilibrium-diffusionRecognizing that
equation will give the exact interior solution if one specifies
the correct boundary conditions. The correct condition at
infinity is simply that the gradient of the temperature isEy

0
4f

­B(0)

­T
dn 5 4acT (0)3

, (43)
zero, and the correct condition at z 5 0 is that the tempera-
ture equals the correct interior temperature, Ty. We seek
an expression for this interior temperature as a function

we both divide and multiply the frequency integral in Eq. of the incident angular intensity. To our knowledge, an
(42) by the integral of ­B/­T to obtain the equilibrium exact expression has not been derived, but Pomraning [11]
diffusion equation in standard form, has derived an approximate expression using a variational

technique. Specifically,

(C (0)
v 1 4aT (0)3

)
­T (0)

­t
2

­

­z
D(0) ­T (0)

­z
5 Q, (44) T 4

y 5 T 4
s 1 g(Ts), (49)
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where

T 4
s 5

8f
ac

Ey

0
E1

0
ef(e, n) de dn, (50)

g(T) 5
ksal
ac

Ey

0
2f E1

0

3e2

sa(n, T)

3 [ f(e, n) 2 B(n, T)] de dn, (51)

1
ksal

5
f

acT 3 Ey

0

1
sa(n, T)

­B(n, T)
­T

dn. (52)

FIG. 1. Spatial dependence of angular intensity for e . 0. Note that
the intensity at a cell interface is defined by the solution in the cell fromThe quantity denoted by Ts is referred to as the surface
which the radiation emerges.temperature. Note that Pomraning’s analysis does not in-

clude scattering.

An explicit temporal treatment of the Planck function gen-
4. THE DISCRETE EQUATIONS erally results in instabilities unless extremely small time

steps are taken, but we have found no difficulties withThe derivation of our discrete equations begins by
our explicit treatment of the transport coefficients. Forassuming the standard discrete ordinates or Sn discretiza-
simplicity, we henceforth suppress the time indices n andtion [1] in the angle, the standard multigroup discretiza-
n 1 1/2 in all the equations which follow.tion [1] in the frequency, and the standard backward-

The spatial discretization is begun by partitioning theEuler discretization in time for Eqs. (1) and (6), respec-
spatial domain, [zL, zR], into the usual set of contiguoustively,
cells: (zi21/2, zi11/2), i 5 1, N, with z1/2 5 zL and zN11/2 5
zR. The material is assumed to be homogeneous within1

c Dtn (c n11/2
m,g 2 c n21/2

m,g ) 1 em
­c n11/2

m,g

­z
1 s n

t,gc
n11/2
m,g each cell, and the heat-capacity and transport coefficients

within each cell are evaluated at the linear average of
the left and right extrapolated cell temperatures. Next we

5
1

4f
s n

s,gf
n11/2
g 1 s n

aBg(T n11/2), (53)
assume a linear-discontinuous representation for the angu-
lar intensity within each cell. Specifically, the dependence
on the interior of cell i is given byfg 5 OM

m51
cm,gwm , (54)

cm,g(z) 5 c L
i,m,gV L

i (z) 1 c R
i,m,gV R

i (z), (57)
Cn

v

Dtn (T n11/2 2 T n21/2) where

V L
i (z) 5

zi11/2 2 z
Dzi

, (58)5 OG
g51

s n
a,g(fn11/2

g 2 4fBg(T n11/2)) 1 Q, (55)

where n is the time index, Dt denotes the time step, m is V R
i (z) 5

z 2 zi21/2

Dzi
, (59)

the direction index, M denotes the total number of discrete
directions, wm denotes the angular quadrature weight for and
direction m, g is the group or frequency index, and G

Dzi 5 zi11/2 2 zi21/2 . (60)denotes the total number of photon frequency groups.
Note that quadrature is usually chosen to be Gaussian The angular intensity at cell interfaces is defined to be
and that the weights sum to 4f. The transport coefficients continuous in the direction of radiation flow, i.e.,
(extinction, absorption, and scattering) and the heat ca-

c(zi11/2)m,g 5 c R
i,m,g for e . 0, (61)pacity change with time because they depend upon the

temperature. However, they are not evaluated at the im-
5 c L

i11,m,g for e , 0. (62)plicit time-centered value of the temperature, i.e.,
(T n11/2 1 T n21/2)/2, but rather at an explicit extrapolated These interface intensity definitions are of fundamental
value calculated as importance to the linear-discontinuous scheme. Changing

these definitions completely changes its behavior. The
complete spatial dependence of the angular intensity isT n 5 T n21/2 1 ST n21/2 2 T n23/2

tn21/2 2 tn23/2 D Dtn21

2
. (56)

illustrated in Fig. 1 for e . 0 and in Fig. 2 for e , 0.
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3. Multiply Eqs. (53) and (55), respectively, by V R
i (z)

and integrate each resulting equation over spatial cell i.

The equation for c L
i,m,g with em . 0 is

Dzi

c Dt FS2
3

c L
i,m,g 1

1
3

c R
i,m,gD2 S2

3
c L,n21/2

i,m,g 1
1
3

c R,n11/2
i,m,g DG

1 em[c L
i,m,g 1 c R

i,m,g 2 2c R
i21,mg]

1 st,g Dzi F2
3

c L
i,m,g 1

1
3

c R
i,m,gG (66)FIG. 2. Spatial dependence of angular intensity for e . 0. As in Fig.

1 the intensity at a cell interface is defined by the solution in the cell
from which the radiation emerges.

5
1

4f
ss,i,g Dzi F2

3
fL

i,g 1
1
3

fR
i,gG

We next assume a dependence for the material temper- 1 sa,i,g Dzi F2
3

BL
i,g 1

1
3

BR
i,gG.

ature on the interior of cell i that is analogous to Eq.
(57). Specifically, the temperature within cell i is given by

When i is equal to 1 (the first cell) one simply substitutes
T(z) 5 TL

i V L
i (z) 1 T R

i V R
i (z). (63) the incoming angular intensity for c R

i21,m,g in Eq. (66). The
equation for c R

i,m,g with em . 0 is
There is no need to define the material temperature at cell
interfaces because our equations do not contain any spatial
derivatives of the temperature. Spatial derivatives of the Dzi

c Dt FS1
3

c L
i,m,g 1

2
3

c R
i,m,gD2 S1

3
c L,n21/2

i,m,g 1
2
3

c R,n21/2
i,m,g DG

trial-space elements take on a delta-function dependence
at the interfaces because of the element discontinuities.

1 em[c R
i,m,g 2 c L

i,m,g]Thus when the finite-element integrals are performed, dif-
ferential terms bring interface values into the discrete

1 st,g Dzi F1
3

c L
i,m,g 1

1
3

c R
i,m,gG (67)equations, whereas nondifferential terms do not.

If we were to make the usual finite-element Galerkin
approximation, we would assume that the spatial depen-

5
1

4f
ss,i,g Dzi F1

3
fL

i,g 1
2
3

fR
i,gGdence of the Planck function is given by B(T(z)), where

T(z) is defined according to Eq. (63). However, this as-
sumption is fraught with numerical difficulty due to the

1 sa,i,g Dzi F1
3

BL
i,g 1

2
3

BR
i,gG.nonlinear dependence of the Planck function on tempera-

ture. Instead we assume that the spatial dependence of the
Planck function is linear-discontinuous. Specifically, the

The equation for c L
i,m,g with em , 0 isPlanck function within cell i is given by Eq. (63):

Bg(z) 5 Bg(T L
i )V L

i (z) 1 Bg(T R
i )V R

i (z), (64) Dzi

c Dt FS2
3

c L
i,m,g 1

1
3

c R
i,m,gD2 S2

3
c L,n21/2

i,m,g 1
1
3

c R,n21/2
i,m,g DG

5 BL
i,gV L

i (z) 1 BR
i,gV L

i (z). (65)

1 em[c R
i,m,g 2 c L

i,m,g]
As in the case of temperature, there is no need to define
the Planck function at cell interfaces.

1 st,g Dzi F2
3

c L
i,m,g 1

1
3

c R
i,m,gG (68)The spatially discretized equations are obtained as

follows:

5
1

4f
ss,i,g Dzi F2

3
fL

i,g 1
1
3

fR
i,gG1. Substitute from Eqs. (57), (61), (62), (63), and (65),

into Eqs. (53) and (55), respectively.

2. Multiply Eqs. (53) and (55), respectively, by V L
i (z) 1 sa,i,g Dzi F2

3
BL

i,g 1
1
3

BR
i,gG.

and integrate each resulting equation over spatial cell i.
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The equation for c R
i,m,g with em , 0 is

e
­c

­z
1 stc 5 0, z [ (0, 1), c(0) 5 1. (72)

The analytic solution to this problem isDzi

c Dt FS1
3

c L
i,m,g 1

2
3

c R
i,m,gD2 S2

3
c L,n21/2

i,m,g 1
1
3

c R,n21/2
i,m,g DG

1 em[2c L
i11,m,g 2 c L

i,m,g 2 c R
i,m,g]

c(z) 5 exp S2
stz
e D, (73)

1 st,g Dzi F1
3

c L
i,m,g 1

1
3

c R
i,m,gG (69)

The linear-discontinuous solution to this equation at
z 5 1 is the Padé (1, 2) approximation to the exponential,5

1
4f

ss,i,g Dzi F1
3

fL
i,g 1

2
3

fR
i,gG

c(1) 5
1 2 t/3

1 1 2t/3 1 t 2/6
, (74)1 sa,i,g Dzi F1

3
BL

i,g 1
2
3

BR
i,gG.

where
When i is equal to N (the right boundary cell) the incident
angular intensity defined by the boundary condition is

t 5 st/e. (75)substituted for c L
i11,m,g in Eq. (69). The equation for

T L
i is

The lumped linear-discontinuous solution to this problem
at z 5 1 is the Padé (0, 2) approximation to the expo-
nential,Cv,i Dzi

Dt FS2
3

T L
i 1

1
3

T R
i D2 S2

3
T L,n21/2

i 1
1
3

T R,n21/2
i DG

c(1) 5
1

1 1 t 1 t 2/2
. (76)5 OG

g51
sa,i,g Dzi FS2

3
fL

i,g 1
1
3

fR
i,gD (70)

The linear-discontinuous solution is third-order accurate2 4f S2
3

BL
i,g 1

1
3

BR
i,gDG1 S2

3
QL

i 1
1
3

QR
i D Dzi .

in t, but it is negative for t . 3. The lumped linear-discon-
tinuous solution is only second-order accurate in t, but it
is strictly positive. Thus the lumped scheme is indeed less

The equation for T R
i is accurate but more robust.

The lumped equation for c L
i,m,g with em . 0 is

Cv,i Dzi

Dt FS1
3

T L
i 1

2
3

T R
i D2 S1

3
T L,n21/2

i 1
2
3

T R,n21/2
i DG Dzi

c Dt
(c L

i,m,g 2 c L,n21/2
i,m,g )

1 em(c L
i,m,g 1 c R

i,m,g 2 2c R
i21,m,g) 1 st,g Dzic

L
i,m,g (77)5 OG

g51
sa,i,g Dzi FS1

3
fL

i,g 1
2
3

fR
i,gD (71)

5
1

4f
ss,i,g Dzif

L
i,g 1 sa,i,g DziBL

i,g .
2 4f S1

3
BL

i,g 1
2
3

BR
i,gDG1 S1

3
QL

i 1
2
3

QR
i D Dzi .

The lumped equation for c R
i,m,g with em . 0 is

In order to achieve greater robustness, we ‘‘lump’’ all
of the spatial averages appearing in Eqs. (66) through (71). Dzi

c Dt
(c R

i,m,g 2 c R,n21/2
i,m,g )

This is a well-known technique which achieves greater
robustness at the cost of accuracy. In this particular case, 1 em(c R

i,m,g 2 c L
i,m,g) 1 st,g Dzic

R
i,m,g (78)

our spatial approximation is reduced from O(Dz3) accuracy
[7] to O(Dz2) accuracy. For instance, consider the follow-

5
1

4f
ss,i,g Dzif

R
i,g 1 sa,i,g DziBR

i,g .
ing problem:
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The lumped equation for c L
i,m,g with em , 0 is ers of « to obtain the basic hierarchical asymptotic

equations. These hierarchical equations are then exten-
sively manipulated to obtain other equations and resultsDzi

c Dt
(c L

i,m,g 2 c L,n21/2
i,m,g ) that yield insight into the asymptotic behavior of the

discrete transport solution.
1 em(c R

i,m,g 2 c L
i,m,g) 1 st,g Dzic

L
i,m,g (79) We first consider the zeroth-order equations. The equa-

tions for «0 are
5

1
4f

ss,i,g Dzif
L
i,g 1 sa,i,g DziBL

i,g .

s (0)
t,i,g Dzi(c L,(0)

i,m,g 2 BL,(0)
i,g ) 5 0, (83)

The lumped equation for c R
i,m,g with em , 0 is

s (0)
t,i,g Dzi(c R,(0)

i,m,g 2 BR,(0)
i,g ) 5 0, (84)

OG
g51

s (0)
t,i,g Dzi(f L,(0)

i,g 2 4fBL,(0)
i,g ) 5 0, (85)

Dzi

c Dt
(c R

i,m,g 2 c R,n21/2
i,m,g )

1 em(2c L
i11,m,g 2 c L

i,m,g 2 c R
i,m,g) 1 st,g Dzic

R
i,m,g (80) OG

g51
s (0)

t,i,g Dzi(fR,(0)
i,g 2 4fBR,(0)

i,g ) 5 0. (86)

5
1

4f
ss,i,g Dzif

R
i,g 1 sa,i,g DziBR

i,g .

From these order «0 equations we find that the zeroth-
order intensities are isotropic in angle and Planckian inThe lumped equation for T L

i is
spectral shape:

Cv,i Dzi

Dt
(T L

i 2 T L,n21/2
i )

(81) c L,(0)
i,m,g 5 BL,(0)

i,g 5
fL,(0)

i,g

4f
, (87)

5 OG
g51

sa,i,g Dzi(fL
i,g 2 4fBL

i,g) 1 QL
i Dzi .

c R,(0)
i,m,g 5 BR,(0)

i,g 5
fR,(0)

i,g

4f
. (88)

The lumped equation for T R
i is

Note that Eqs. (87) and (88) are equivalent to Eqs. (25)
and (26). Thus our discrete zeroth-order results are inCv,i Dzi

Dt
(T R

i 2 T R,n21/2
i )

(82)
agreement with the analytic results.

We next consider the first-order equations. The order
5 OG

g51
sa,i,g Dzi(fR

i,g 2 4fBR
i,g) 1 QR

i Dzi . «1 equation for c L
i,m,g with em . 0 is

5. A DISCRETE ASYMPTOTIC ANALYSIS
em F(c L,(0)

i,g 1 c R,(0)
i,g ) 2 2 H fm,g , if i 5 1

BR,(0)
i21,g , if i ? 1

JG
In this section, we perform a discrete asymptotic

analysis on the lumped LD equations. We follow essen- 1 Dzi(s (0)
t,i,gc L,(1)

i,m,g 1 s (1)
t,i,gc L,(0)

i,g )
(89)tially the same procedure as we did with the analytic

asymptotic analysis. As one would expect, the overall
5 s (0)

s,i,g Dzi SfL,(0)
i,g

4f
2 BL,(0)

i,g Dderivation is straightforward, but rather long and tedious.
Hence we give an abbreviated derivation here. Unlike

1 Dzi(s (0)
t,i,gBL,(1)

i,g 1 s (1)
t,i,gBL,(0)

i,g ),the analytic case, we are able to directly determine the
asymptotic behavior of our transport scheme at spatial
boundaries. In particular, we derive an expression analo- where fm,g denotes the incident intensity at the left bound-
gous to Eq. (49) for the interior temperature solution ary. The order «1 equation for c L

i,m,g with em , 0 is
associated with the half-space problem previously dis-
cussed in Section 3. em(c R,(0)

i,g 2 c L,(0)
i,g ) 1 Dzi(s (0)

t,i,gc L,(1)
i,m,g 1 s (1)

t,i,gc L,(0)
i,g )

We begin by applying the asymptotic scaling to Eqs.
(77) through (82). Next we expand the intensities and

5 s (0)
s,i,g Dzi SfL,(0)

i,g

4f
2 BL,(0)

i,g D (90)temperature solutions, transport coefficients, and heat
capacities in a power series in «, as was done in the

5 1 Dzi(s (0)
t,i,gB

L,(1)
i,g 1 s (1)

t,i,gB
L,(0)
i,g ).analytic case. Finally, we equate coefficients of like pow-
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The order «1 equation for c R
i,m,g with em . 0 is where

em(c R,(0)
i,g 2 c L,(0)

i,g ) 1 Dzi(s (0)
t,i,gc R,(1)

i,m,g 1 s (1)
t,i,gc R,(0)

i,g )
kel 5

1
2f O

em.0
emwm . (98)

5 s (0)
s,i,g Dzi SfR,(0)

i,g

4f
2 BR,(0)

i,g D (91)

We obtain an expression for the first-order net flux on the
1 Dzi(s (0)

t,i,gB
R,(1)
i,g 1 s (1)

t,i,gB
R,(0)
i,g ),

left side of the first cell:

and the order «1 equation for c R
i,m,g with em , 0 is

OG
g51
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em51

emc L,(1)
i,m,gwm

em[2(c L,(0)
i,g 1 c R,(0)

i,g ) 1 2c L,(0)
i11,g]
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5 2

1
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1
s (0)

t,i,g

(99)

5 s (0)
s,i,g Dzi SfR,(0)

i,g

4f
2 BR,(0)

i,g D
3 S4fBR,(0)

i,g 2 2 O
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3e2
m fm, gwmD, i 5 1.

1 Dzi(s (0)
t,i,gB

R,(1)
i,g 1 s (1)

t,i,gB
R,(0)
i,g ).

The remaining order «1 equations are We obtain an expression for the first-order net flux on the
left side of all interior cells:
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g51

Dzihs (0)
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i,g 2 4fBL,(1)
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(100)1 (s (1)
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i,g )j 5 0, (93)

OG
g51
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4f
s (0)
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(BR,(0)
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i,g ), i ? 1.

1 (s (1)
t,i,g 2 s (0)

s,i,g)(fR,(0)
i,g 2 4fBR,(0)

i,g )j 5 0. (94)
Finally, we obtain an expression for the first-order net flux
on the right side of all cells:Using these first-order equations, together with the

zeroth-order equations, we obtain several results. For
instance, we find that the first-order angular flux is in OG

g51
ON

em51
emc R,(1)

i,m,gwm

(101)
pointwise agreement with the analytic first-order angular
flux given by Eq. (32). For example, we find that for
em , 0,

5 2
1

3 Dzi
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i,g ) 1 BL,(1)
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We next consider the second-order equations. The order
«2 equation for c L

i,m,g with em . 0 is
We find that the zeroth order intensities and temperatures
are continuous at all but the first cell interface:
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i,m,g )
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We find that the temperature on the left side of the
first cell is equal to the surface temperature defined by 1 Dzi(s (0)
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Eq. (50),
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The order «2 equation for c L
i,m,g with em , 0 is and
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i,g ). (103) Using these second-order equations, together with the

first-order equations and the zeroth-order equations, we
obtain the following discrete diffusion equation on the

The order «2 equation for c R
i,m,g with em . 0 is mesh interior,
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The order «2 equation for c R
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Equation (108) represents a valid discretization of theThe remaining order «2 equations are
analytic equilibrium diffusion equation given by Eq. (44).
Equation (108) is a three-point vertex-centered diffusion
difference equation with a fully implicit one-point time-
derivative term. This is a particularly robust structure for
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v,i Dzi

Dt
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the equation. Vertex unknowns are consistent with the
continuity of the zeroth-order intensities and temperatures
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Dzihs (0)
t,i,g(fL,(2)

i,g 2 4fBL,(2)
i,g ) (106) at the interior cell interfaces. In fact, if one were to ignore

the nonlinearities, this equation would be analogous to
a lumped linear-continuous differencing of the diffusion1 (s (1)

t,i,g 2 s (0)
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equation. Thus it appears that our lumped linear-discontin-
1 [s (2)

t,i,g 2 s (1)
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i,g )j 1 QL

i Dzi uous approximation for the transport equation gives rise
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to a lumped linear-continuous approximation for the equi- tion scheme. Although Eq. (114) is similar to Eq. (49), it
is not identical. There are four differences between theselibrium diffusion equation in the thick diffusion limit.

Note that two expressions. First, Eq. (114) includes scattering
whereas Eq. (49) does not. Second, the expression for
[s (0)

t,1 ] appearing in Eq. (114) represents a numerical ap-
proximation to the Rosseland-mean extinction coefficientOG

g51

1
s (0)

t,i,g
(B(0)

i11/2,g 2 B(0)
i21/2,g)

OG
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P
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1
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t,i,g

­B(0)
i,g

­T

OG
g51

­B(0)
i,g

­T

. (113) appearing in Eq. (49). Third, the quantity s (0)
t,1,g appearing

in Eq. (114) is evaluated at the average of T̃s and T̃y (the
average temperature in the first cell), whereas the quantity
ksal appearing in Eq. (49) is evaluated at Ts. Fourth, be-

Thus ks (0)
t,i l represents a numerical approximation to the cause [s (0)

t,1 ] and s (0)
t,1,g are explicitly dependent upon Ty,

Rosseland extinction coefficient for cell i. Although the Eq. (110) represents an implicit expression for T̃y, whereas
expressions for T̃ (0)

i11/2 and ks (0)
t,i l become indeterminate (i.e., Eq. (49) represents an explicit expression for Ty. Consider-

of the form 0/0) when the temperature is constant within ing the numerical significance of these differences, it seems
a cell, they are nonetheless well-defined in the limit as likely that T̃y will nearly equal Ty in problems without
a constant temperature is approached. It is possible to scattering. The results later given in the computational
manipulate Eq. (108) to eliminate all indeterminate expres- section support this conjecture.
sions, but the resulting equation is more difficult to recog-
nize as an approximation to the analytic equilibrium diffu- 6. SOLUTION OF THE EQUATIONS
sion equation. Since we do not actually solve Eq. (108)
and, since the indeterminate expressions are actually well- Our solution technique is based upon the following three
defined, their presence is of no consequence. fundamental elements:

As previously, noted, the temperature on the left side
1. A linearization of the Planckian temperature depen-of the first cell assumes the surface temperature defined

dence which enables the material temperature to be elimi-by Eq. (97) (a quadrature approximation to Eq. (50)). This
nated from the transport equation. Solution of the resultingwould seem to indicate that the discrete interior solution
linear transport equation represents a single Newton itera-for the model half-space problem is given by the surface
tion on the non-linear system.temperature. However, further analysis of the asymptotic

equations shows that for the model problem, the tempera- 2. Use of the standard source iteration technique to
tures at all points other than the first are constant and solve the transport equation.
assume the value, 3. Diffusion-synthetic acceleration of the scattering

source iterations. This technique is well known within the
neutron transport community [12].T̃ 4

y 5 T̃ 4
s 1

1
ac
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3e2
m[ fm,g 2 Bg(Ts)]wm

s (0)
t,1,g

, (114)
4. Linear multifrequency-grey acceleration of the lin-

earized Planckian source iterations [14].
where T̃s is the surface temperature calculated with the Sn For simplicity, we initially describe our solution techniqueangular quadrature,

in terms of the time and energy discretized but spatially
continuous equations. The linearization process begins by
assuming thatT̃ 4

s 5
2

ackel O
G

g51
O

em.0
em fm,gwm (115)

Bn11/2 5 Bn21/2 1
­Bn21/2

­T
(T n11/2 2 T n21/2). (117)and

Substituting from Eq. (117) into Eqs. (53) and (55), we
obtain, after tedious but straightforward algebraic manipu-1

[s (0)
t,1 ]

5

OG
g51

1
s (0)

t,1,g
[Bg(Ty) 2 Bg(Ts)]

OG
g51

[Bg(Ty) 2 Bg(Ts)]
. (116)

lation,

em
­cm,g

­z
1 ŝt,gcm,g 5

1
4f

ss,gfg 1
1

4f
nxg OG

k51
sa,kfkEquation (114) is strikingly similar to Pomraning’s varia-

tional expression for Ty as given by Eq. (49). This is clearly
an extraordinary result that gives us confidence in the accu-

1 qg 1
1

c Dt
c n21/2

m,g , (118)
racy and robustness of our linear-discontinuous discretiza-
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the right boundary. For a given direction and energy group
T 5 FOG

g51
sa,g(fg 2 4fBn21/2

g ) 1 QG@ with e . 0, the incident intensity at the left boundary
provides the initial condition needed to solve for the two
corresponding intensities in the first (leftmost) spatial cell.FCv

Dt
1 4f OG

g51

­Bn21/2
g

­T G1 T n21/2, (119) Solving for the intensities in the first cell provides the
initial condition for the intensities in the second cell. The
intensities in the second cell are then calculated and thewhere
process is continued until the intensities in the last
(rightmost) cell are obtained. The solution for the intensi-
tites with e , 0 begins at the right boundary and proceedsŝt,g 5 st,g 1

1
c Dt

, (120)
analogously. For obvious reasons, this solution process is
often referred to as a sweep.

n 5 F4f OG
g51

sa,g
­Bn21/2

g

­T G@FCv

Dt
1 4f OG

g51
sa,g

­Bn21/2
g

­z G,

(121)

Unfortunately, this straightforward iteration process can
be very slowly convergent if either of the following condi-
tions are met:

1. The ratio of the scattering coefficient to the extinc-
xg 5 Fsa,g

­Bn21/2
g

­T G@FOG
g51

sa,k
­Bn21/2

k

­T G, (122) tion coefficient is near unity, i.e., ss,g/st,g P 1.

2. The material and radiation are strongly coupled, i.e.,
the system is optically thick and n P 1.qg 5 sa,gBn21/2

g 1
1

4f
nxg FQ 2 4f OG

k51
sa,k

­Bn21/2
k

­T G. (123)

We eliminate this poor convergence by sequentially
applying two diffusion-based acceleration techniques: dif-

Note that Eq. (118) no longer depends upon the material fusion-synthetic acceleration [12] and linear multifre-
temperature, but Eq. (119) still contains the photon intensi- quency-grey acceleration [14]. Once a sweep has been per-
ties. Thus Eq. (118) is solved first, after which Eq. (119) formed for all of the directions in an energy group, a
is used to calculate the material temperatures. Further diffusion-synthetic acceleration step is performed for that
note from the right side of Eq. (118) that the temperature group. This step begins solving the diffusion equation,
elimination process results in a coupling between the en-
ergy groups through an effective emission source. Interest-
ingly, this emission source is mathematically equivalent to 2

­

­z
D̂g

­dfg

­z
1 sadfg 5 ss,g(fl11/3

g 2 fl
g), (125)

a neutron fission source with n playing the role of the
number of neutrons emitted per fission and hxgjG

g playing
the role of the fission spectrum. where

Equation (118) is solved via source iteration. Specifically,
the scattering and emission sources are lagged, resulting D̂g 5 1/3ŝt,g (126)
in the iteration equations

and where dfg denotes an estimate of the additive error
in the angle-integrated intensity for group g due to theem

­c l11/2
m,g

­z
1 ŝt,gc l11/3

m,g 5
1

4f
ss,gf

l
g 1

1
4f

nxg OG
k51

sa,kfl
k

(124) lagged scattering source. The error estimate is then added
to the solution iterate at step l 1 Ad under the assumption

1 qg 1
1

c Dt
c n21/2

m,g , that the error has a diffusive (P1) angular dependence.
This yields the ‘‘accelerated’’ iterate at step l 1 Sd,

where l is the iteration index. Note that l 1 Ad is used rather
than l 1 1, in anticipation of two additional acceleration c l12/3

m,g 5 c l11/3
m,g 1

1
4f

dfg 2
3em

4f
D̂g= dfg , (127)

steps. The left side of Eq. (124) represents a first-order
ordinary differential equation for each discrete direction
and energy group. When this equation is spatially differ- where 2D̂g= dfg denotes an estimate of the flux error

consistent with the diffusion approximation for dfg. Afterenced, a block lower-triangular matrix is obtained. The
corresponding system of equations can be directly solved a sweep has been performed for each direction in each

group, and a diffusion-synthetic acceleration step has beenvia a sequential set of 2 3 2 matrix solutions. For instance,
let us assume source or vacuum conditions at both left and performed for each group, the linear multifrequency-grey

acceleration step is performed. This step begins by solvingright boundaries. Then the incident angular intensities are
known for e . 0 at the left boundary and for e , 0 at the diffusion equation,
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ized equations are mathematically equivalent to the neu-
2

­

­z
kDl ­dF

­z
1 ksl dF 5 n OG

g51
ss,g(fl12/3

g 2 fl
g), (128) tron transport equation with fission. In principle, the

boundary conditions for the acceleration equations are
chosen so that the accelerated iterates (Eq. (127) in thewhere
case of diffusion-synthetic acceleration and Eq. (132) in
the case of linear multifrequency-grey acceleration) sat-
isfy the correct boundary conditions. However, since thekDl 5

1
3 O

G

g51

jg

ŝt,g
, (129)

boundary conditions cannot always be exactly satisfied,
they are often satisfied in an integral sense. This principle

ksl 5
1

c Dt
1 (1 2 n) OG

g51
sa,gjg , (130) is discussed in Ref. [16]. The boundary conditions that

we use ensure that the accelerated iterate at step l 1
1 satisfies both local and global energy conservation.

jg 5
xg

sa,g 1 1/(c Dt)@OG
k51

xk

sa,k 1 1/(c Dt)
, (131) This is a highly desirable property since it enables us

to terminate the iteration process sooner than otherwise
would be possible.

and where dF denotes an estimate of the additive error As previously noted, the solution of the linearized
in the frequency-angle-integrated intensity iterate due to equations represents a single Newton iteration on the
the lagged emission source. Note that hjgjG

g51 represents full system. While it is possible to continue the Newton
the assumed frequency shape of the additive error. The iterations and obtain a fully converged nonlinear solution,
error estimate is then added to the solution iterate at step we generally do not do so. We have found that a
l 1 Sd under the assumption that the error has a diffusive single Newton iteration is provides temporal stability
(P1) angular dependence. This yields the ‘‘accelerated’’ and adequate accuracy for our purposes. However, our
iterate at step l 1 1, discrete asymptotic analysis rigorously applies only if the

Newton iterations are continued to convergence.
We now give the discrete linearized equations. Thec l11

m,g 5 c l12/3
m,g 1

1
4f

dFjg 2
3em

4f
D̂gjg= dF, (132)

linearized lumped equation for c L
i,m,g with em . 0 is

where 2D̂gjg= dF denotes an estimate of the flux error Dzi

c Dt
(c L

i,m,g 2 c L,n21/2
i,m,g )consistent with the diffusion approximation for dF. This

completes one accelerated iteration. To summarize the
process, a sweep is performed for each direction in each 1 em[c L

i,m,g 1 c R
i,m,g 2 2c R

i21,m,g] 1 ŝt,g Dzic
L
i,m,g

(133)group. A diffusion-synthetic acceleration step is then
performed for each group. Finally, a single linear multifre- 5

1
4f

ss,i,g Dzif
L
i,g 1

1
4f

nL
i xL

i,g OG
k51

sa,i,k Dzif
L
i,k

quency-grey step is performed. Both of our acceleration
schemes are very effective. Most importantly, they bound

1 qL
i,g Dzi 1

Dzi

c Dt
c L,n21/2

i,m,g ,the spectral radius for the iterative process away from
unity. This is later demonstrated computationally.

The general idea behind both acceleration schemes is
wheresimply to replace an exact transport equation for the

iterative errors with a diffusion approximation. Because
diffusion theory can be thought of as a ‘‘coarse-grid’’

nL/R
i 5 F4f OG

g51
sa,i,g

­BL/R,n21/2
i,g

­T G@approximation in angle to transport theory, these schemes
can be interpreted as two-grid multigrid schemes. These
schemes are effective because the transport sweep

3 FCv

Dt
1 4f OG

g51
sa,i,g

­BL/R,n21/2
i,g

­T G, (134)strongly attenuates all error modes other than those
which are diffusive. In the case of diffusion-synthetic
acceleration, the diffusive modes are those which are

x L/R
i,g 5 Fsa,i,g

­BL/R,n21/2
i,g

­T G@FOG
k51

sa,i,k
­BL/R,n21/2

i,k

­T G, (135)nearly isotropic in angle. In the case of linear multifre-
quency-grey acceleration, the diffusive modes are those

qL/R
i,g 5 sa,i,gBL/R,n21/2

i,gwhich are both nearly isotropic in angle and fixed in
frequency shape. These points are discussed in detail
in Refs. [12, 15]. Note that, although a fission-source 1

1
4f

nL/R
i x L/R

i,g FQL/R
i 2 4f OG

k51
sa,i,k

­BL/R,n21/2
i,k

­T G.
acceleration scheme is described in Ref. [15], it is nonethe-
less directly applicable to our problem because our linear- (136)
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The linearized lumped equation for c R
i,m,g with em . 0 is The equations for dfL

i,g and dfR
i,g, respectively, are

2(dJi,g 2 dJi21/2,g) 1 sa,i,g Dzi dfL
i,g

(142)
Dzi

c Dt
(cR

i,m,g 2 cR,n21/2
i,m,g ) 1 em[cR

i,m,g 2 cL
i,m,g] 1 st,g Dzic

R
i,m,g

5 ss,i,g Dzi(fL,l11/3
i,g 2 fL,l

i,g )

5
1

4f
ss,i,g Dzif

R
i,g 1

1
4f

nR
i xR

i,g OG
k51

sa,i,k Dzif
R
i,k 1 qR

i,g Dzi .
and

(137)

2(dJi11/2,g 2 dJi,g) 1 sa,i,g Dzi dfR
i,g

(143)The linearized lumped equation for c L
i,m,g with em , 0 is

5 ss,i,g Dzi(fR,l11/3
i,g 2 fR,l

i,g ),
Dzi

c Dt
(c L

i,m,g 2 c L,n21/2
i,m,g ) 1 em[c R

i,m,g 2 c L
i,m,g] 1 st,g Dzic

L
i,m,g

where dJ denotes the flux error,

5
1

4f
ss,i,g Dzif

L
i,g 1

1
4f

nL
i x L

i,g OG
k51

sa,i,k Dzif
L
i,k 1 qL

i,g Dzi . dJi11/2,g 5 As(dJi11 1 dJi,g) 1 Af(dfR
i,g 2 dfL

i11,g), (144)
(138)

dJi,g 5 2
D̂i,g

Dzi
(dfR

i,g 2 dfL
i,g). (145)

The linearized lumped equation for c R
i,m,g with em , 0 is

At the left boundary, Eq. (144) becomesDzi

c Dt
(cR

i,m,g 2 cR,n21/2
i,m,g ) 1 em[2cL

i11,m,g 2 cL
i,m,g 2 cR

i,m,g]

dJ1/2,g 5 As dJ1 2 Af dfL
1,g 1 RL,l11/3

B,g,m , (146)
1 st,g Dzic

R
i,m,g (139)

where RL,l11/3
B,g,m denotes the left boundary residual at itera-5

1
4f

ss,i,g Dzif
R
i,g 1

1
4f

nR
i xR

i,g OG
k51

sa,i,k Dzif
R
i,k 1 qR

i,g Dzi .
tion step l 1 Ad. In general, a boundary residual is nonzero
only if the angular intensity does not satisfy the prescribed

The linearized lumped equation for T L
i is boundary condition,

RL,l11/3
B,g,m 5 O

em.0
em(c L,l11/3

B,g,m 2 f L
B,g,m)wm , (147)T L

i 5 FOG
g51

sa,i,g (fL
i,g 2 4fBL,n21/2

i,g ) 1 QL
i G@

(140)

where c L,l11/3
B,g,m is the incident intensity on the left boundary,FCv,i

Dt
1 4f OG

g51
sa,i,g

­BL,n21/2
i,g

­T G1 T L,n21/2
i .

and f L
B,g,m is the prescribed incident intensity. For the vac-

uum case, f L
B,g,m 5 0, and for the reflective case, f L

B,g,m 5
The linearized lumped equation for T R

i is c L,l11/3
1,g,m9 , where em9 5 2em. At the right boundary, Eq.

(144) becomes

T R
i 5 FOG

g51
sa,i,g (fR

i,g 2 4fBR,n21/2
i,g ) 1 QR

i G@
(141)

dJN11/2,g 5 As dJN 1 Af dfR
N,g 1 RR,l11/3

B,g,m , (148)

FCv,i

Dt
1 4f OG

g51
sa,i,g

­BR,n21/2
i,g

­T G1 T R,n21/2
i . where RR,l11/3

B,g,m is the right boundary residual at iteration
step l 1 Ad,

Finally, we give the discrete diffusion equations used in
RR,l11/3

B,g,m 5 O
em,0

em(c R,l11/3
B,g,m 2 f R

B,g,m)wm . (149)our acceleration schemes. It is critical that the discretiza-
tion of the diffusion equations be consistent with the dis-
cretization of the transport equation. Failure to ensure
such consistency results in instabilities in problems with Note that the flux errors can be eliminated from Eqs. (142)

and (143) via Eqs. (144) and (145). This yields a closedoptically thick spatial cells and strong material-radiation
coupling. We use a type of consistent linear-discontinuous linear system of equations for the angle-integrated inten-

sity errors, which we solve directly using Gaussian elimina-diffusion differencing first suggested by Adams and Mar-
tin [17]. tion with partial pivoting.
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The equations for dFL
i and dFR

i , respectively, are 7. COMPUTATIONAL RESULTS

In this section we perform calculations relating to the2(d I i 2 d I i21/2) 1 ksli Dzi dFL
i

(150)
behavior of our scheme in the asymptotic equilibrium-
diffusion limit with both resolved and unresolved boundary

5 nL
i OG

g51
sa,i,g Dzi(fL,l12/3

i 2 fL,l
i )

layers. We also perform calculations which demonstrate
the effectiveness of our iterative convergence acceleration
schemes: the diffusion-synthetic scheme and the linearand
multifrequency-grey scheme. All calculations were per-
formed on a CRAY-YMP computer at Los Alamos Na-2(d I i11/2 2 d I i,g) 1 ksli Dzi dFR

i

(151)
tional Laboratory.

The first set of calculations considers a problem nearly
5 nR

i OG
g51

sa,i,g Dzi(fR,l12/3
i,g 2 fR,l

i,g ),
identical to the model half-space problem previously dis-
cussed. It consists of a 1D slab of aluminum with a thickness
of 10 cm, radiation incident upon the left face, and a reflec-where d I denotes the frequency-integrated flux error,
tive boundary condition on the right face. Two calculations
were performed for each of six incident intensity distribu-d I i11/2 5 As(d I i11 1 d I i,g) 1 Af(dFR

i 2 dFL
i11), (152)

tions: one with the boundary layer spatially resolved; one
with the boundary layer spatially unresolved. Although

d I i,g 5 2
kDli

Dzi
(dFR

i,g 2 dFL
i ). (153) the incident intensity distribution was varied, the total in-

coming radiation energy was always normalized to yield a
surface temperature of 1.0 keV. The material temperatureAt the left boundary, Eq. (152) becomes
of the slab was initialized at 1.0 keV, and the radiation
field was initialized to a 1.0 keV Planckian distribution. Thed I 1/2 5 As d I 1 2 Af dFL

1 1 RL,l12/3
B,m , (154)

incident angular distribution was either isotropic, nearly
perpendicular (all radiation in the incident direction closest

where RL,l12/3
B,m denotes the left boundary residual at itera-

to e 5 1), or nearly grazing (all radiation in the incident
tion step l 1 Sd,

direction closest to e 5 0). The frequency distribution was
either Planckian or monoenergetic (all incident radiation
in one group). In order to facilitate a proper comparisonRL,l12/3

B,m 5 OG
g51

O
em.0

em(c L,l12/3
B,g,m 2 f L

B,g,m)wm , (155)
with the variational results of Pomraning, scattering was
neglected in these calculations. The absorption coefficient
tables were obtained for a 33-group set collapsed from theand where c L,l12/3

B,g,m is the incident intensity on the left
Los Alamos Astrophysical Library [18]. The group energyboundary at iteration step l 1 Sd and f L

B,g,m is the prescribed
bounds (rather than frequency bounds) are given in Tableincident intensity. At the right boundary, Eq. (152) be-
I. When the incident intensity was monoenergetic, all ofcomes
the radiation was put into group 14, which has an average
energy of 1.165 keV. An S16 angular approximation withd I N11/2 5 As d I N 1 Af dFR

N 1 RR,l12/3
B,g,m , (156)

Gauss quadrature was used in all of the calculations. All
calculations with an unresolved boundary layer were per-where RR,l12/3

B,g,m is the right boundary residual at iteration
formed with 10 uniformly spaced cells, and all calculationsstep l 1 Sd,
with a resolved boundary layer were performed with 50
logarithmically spaced cells. The smallest cell in the loga-
rithmic mesh was the leftmost cell, and the growth factorRR,l12/3

B,g,m 5 OG
g51

O
em,0

em(c R,l12/3
B,g,m 2 f R

B,g,m)wm . (157)
was 1.2 (i.e., each cell was 20% larger than the cell to its
left). Each calculation was evolved in time until the steady-
state solution was obtained. The quantities of interest thatNote that the flux errors can be eliminated from Eqs. (150)
were calculated consisted of T r

y,c , the computational valueand (151) via Eqs. (152) and (153). This yields a closed
obtained for Ty with a resolved boundary layer; T u

y,c , thelinear system of equations for the frequency-angle-inte-
computational value for Ty with an unresolved boundarygrated intensity errors, which is solved directly using
layer; Ty,p, the value for Ty obtained using Pomraning’sGaussian elimination with partial pivoting.
variational expression; and Ty,a , the value for Ty obtainedOur accelerated iteration scheme is rapidly convergent
from our discrete asymptotic analysis. These quantities areand appears to be unconditionally effective. Efficiency is

demonstrated in the computational section. given for each of the six problems in Table II. Note that
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TABLE I that our transport difference scheme is fairly accurate in
the equilibrium diffusion limit, even with spatially unre-33-Group Energy Structure
solved boundary layers. As one might expect, the poorest

Lower bound Upper bound agreement occurs for the incident intensity distribution
Group (keV) (keV) that is the most nonequilibrium, the grazing/monoener-

getic case. Second, the agreement between T u
y,c and Ty,a1 1.00 3 1025 1.78 3 1022

is excellent, demonstrating the validity of our asymptotic2 1.78 3 1022 3.16 3 1022

3 3.16 3 1022 5.62 3 1022 analysis. Third, Ty,a is in good agreement with Ty,p. This
4 5.62 3 1022 7.50 3 1022 is expected since the expressions for these two quantities
5 7.50 3 1022 1.00 3 1021

are quite similar. Surprisingly, Ty,a seems to be more accu-
6 1.00 3 1021 1.33 3 1021

rate than Ty,p for the grazing-incidence cases. We suspect7 1.33 3 1021 1.78 3 1021

that this is simply fortuitous. Overall, it seems clear that8 1.78 3 1021 2.37 3 1021

9 2.37 3 1021 3.16 3 1021 the linear-discontinuous equations are not as accurate with
10 3.16 3 1021 4.22 3 1021

unresolved boundary layers for the nonlinear case as they
11 4.22 3 1021 5.62 3 1021

are for the linear case.12 5.62 3 1021 7.50 3 1021

The second set of calculations performed relate to the13 7.50 3 1021 1.00 3 1010

14 1.00 1.33 efficiency of our acceleration schemes. Thompson scatter-
15 1.33 1.78 ing was included in all of the calculations. A total of three
16 1.78 2.37 calculations were performed. Each corresponds to the
17 2.37 3.16

model problem associated with the first set of calculations.18 3.16 4.22
The incident flux distribution was grazing in angle and19 4.22 5.62

20 5.62 7.50 mononergetic in frequency, and the magnitude of the in-
21 7.50 1.00 3 1021

tensity was normalized to achieve a surface temperature
22 1.00 3 101 1.33 3 101

of 1.0 keV. The previously described spatial grid consisting23 1.33 3 101 1.78 3 101

of 50 logarithmically spaced cells was used in the calcula-24 1.78 3 101 2.37 3 101

25 2.37 3 101 3.16 3 101 tions. The material temperature was initialized at 1.0 keV,
26 3.16 3 101 4.22 3 101 and the radiation field was initialized to a 1.0 keV Planckian
27 4.22 3 101 5.62 3 101

distribution. Each calculation was evolved in time for a
28 5.62 3 101 7.50 3 101

total period of 1028 s. The first calculation was performed29 7.50 3 101 1.00 3 102

with both diffusion-synthetic acceleration and multifre-30 1.00 3 102 1.33 3 102

31 1.33 3 102 1.78 3 102 quency-grey acceleration. The second calculation was per-
32 1.78 3 102 2.37 3 102

formed without convergence acceleration of any kind. The
33 2.37 3 102 3.00 3 102

iterations in both the first and second calculations were
carried out until the absorption rates satisfied a maximum
pointwise relative change of less than 1024. The third calcu-
lation was carried out with both diffusion-synthetic acceler-values of both T and T 4 are given in Table II. This is
ation and multifrequency-grey acceleration, but only oneappropriate since the radiation intensity is proportional
accelerated iteration was performed per time step. Theto T 4.
temperature solutions from all three calculations are indis-Several trends in the data can be seen from Table II.

First, T u
y,c is in fairly good agreement with T r

y,c , indicating tinguishable from one another when plotted on a linear

TABLE II

Results for Asymptotic Calculations

T r
y,c T r

y,c
4 T u

y,c T u
y,c

4 Ty,p Ty,p
4 Ty,a Ty,a

4

Incidence Spectrum (keV) (keV 4) (keV) (keV 4) (keV) (keV 4) (keV) (keV 4)

Isotropic Blackbody 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Normal Blackbody 1.05 1.22 1.04 1.17 1.04 1.17 1.04 1.17
Grazing Blackbody 0.87 0.57 0.91 0.69 0.93 0.75 0.91 0.69
Isotropic One-group 0.92 0.72 0.94 0.78 0.94 0.78 0.94 0.78
Normal One-group 0.95 0.81 0.96 0.85 0.96 0.85 0.96 0.85
Grazing One-group 0.84 0.50 0.90 0.66 0.92 0.72 0.90 0.66
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TABLE III scheme for radiative transfer is not as accurate with unre-
solved boundary layers as the traditional linear-discontinu-Results for Time-Dependent
ous scheme for neutron transport. This is not surprisingCalculations
since nonlinear equations are generally more difficult to

CPU time solve than linear equations.
Calculation (s) Although we assumed that material properties are con-

stant in each spatial cell, it is not necessary to do so. It1 795
seems possible that a variation in transport coefficients2 125

3 61 within each cell might improve the asymptotic behavior of
our scheme near unresolved boundary layers. Adams and
Nowak [19] have recently developed a differencing scheme
that is very similar to our scheme, but which has transportscale varying from 0.85 keV to 1.35 keV. The CPU times
coefficients at the left and right sides of each cell ratherfor each calculation are given in Table III. It can be seen
than a single set of transport coefficients within each cell.from Table III that the accelerated and converged calcula-
Their results indicate that two sets of transport coefficientstion is more than six times faster than the unaccelerated
per cell result in slightly better agreement with Pomran-calculation. Furthermore, the accelerated calculation with
ing’s expression for Ty.one iteration per time step is more than 13 times faster than

Future work should include the generalization of ourthe unaccelerated and converged calculation. In general we
scheme to 1D spherical geometry and multidimensionalhave found that one accelerated iteration per time step is
geometries. The former task appears to be straightforward.adequate for realistic calculations. One of the reasons that

this strategy works well is that energy is both locally and
ACKNOWLEDGMENTglobally conserved with our algorithm after each acceler-

ated iteration. The impact of this property is demonstrated
This work was performed under the auspices of the U.S. Department

for a closely related neutronics acceleration scheme in of Energy and the Defense Nuclear Agency.
Ref. [15].
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